skip to main content


Search for: All records

Creators/Authors contains: "Townsend-Small, Amy"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    In this study, we present seasonal atmospheric measurements of δ13CCH4from dairy farms in the San Joaquin Valley of California. We used δ13CCH4to characterize emissions from enteric fermentation by measuring downwind of cattle housing (e.g., freestall barns, corrals) and from manure management areas (e.g., anaerobic manure lagoons) with a mobile platform equipped with cavity ring‐down spectrometers. Across seasons, the δ13CCH4from enteric fermentation source areas ranged from −69.7 ± 0.6 per mil (‰) to −51.6 ± 0.1‰ while the δ13CCH4from manure lagoons ranged from −49.5 ± 0.1‰ to −40.5 ± 0.2‰. Measurements of δ13CCH4of enteric CH4suggest a greater than 10‰ difference between cattle production groups in accordance with diet. Isotopic signatures of CH4were used to characterize enteric and manure CH4from downwind plume sampling of dairies. Our findings show that δ13CCH4measurements could improve the attribution of CH4emissions from dairy sources at scales ranging from individual facilities to regions and help constrain the relative contributions from these different sources of emissions to the CH4budget.

     
    more » « less
  2. Abstract

    Arctic lakes store, modify, and transport large quantities of carbon from terrestrial environments to the atmosphere; however, the spatial and temporal relationships between quantity and composition of dissolved organic matter (DOM) have not been well characterized across broad arctic regions. Moreover, most arctic lake DOM compositions have been examined during the ice‐free summer, whereas DOM cycling between the ice‐covered winter months and summer have not been addressed. To resolve these spatial and seasonal uncertainties in DOM cycling, we sampled a series of arctic lakes from the North Slope of Alaska across a latitudinal gradient in the winter and summer over 3 years. Samples were analyzed for dissolved organic carbon concentration and DOM composition was characterized using optical and fluorescence properties combined with molecular‐level analysis using Fourier transform‐ion cyclotron resonance mass spectrometry. Tundra lake DOM properties including aromaticity and molecular stoichiometries were similar to other northern high‐latitude lakes, but optical parameters related to aromaticity and molecular weight were greater in major arctic rivers and in coastal lakes in the North Slope region. DOM composition was highly seasonal, with ice exclusion concentrating microbially processed DOM in the winter water columns, potentially influencing DOM cycling the following summer. However, the greatest variations in DOM composition were related to lake depth and likely other physical features including morphology and bathymetry. As the Arctic warms, we expect changes in hydrology and ice cover to enhance under‐ice microbial DOM processing, early summer photodegradation, and ultimately carbon fluxes to the atmosphere after ice‐out.

     
    more » « less